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ABSTRACT
A-priori boundedness results for solutions of strongly coupled semilinear
parabolic systems of second order under homogeneous linear boundary conditions
are established. 1In contrast to {1), [2], [4] it is not supposed that the

diffusion operator is self-adjoint or that the nonlinearity is of gradient-

type.
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SIGNIFICANCE AND EXPLANATION

The prototype parabolic partial differential equation is the heat
conduction equation. This paper deals with systems of parabolic equations.
Such systems occur in many contexts in addition to heat conduction, e.qg.
biology, in nuclear reactor techniques, in economics, etc.

Let the n-vector u denote the (unknown) solution of a system of n
parabolic partial differential equations. An important question in the study
of these systems is the boundedness of u. Many techniques and criteria have
been developed to solve this problem if the system is weakly coup¥g§L i.e. if‘_h
the kth equation contains second order space derivatives of only Q;, the kxth
component of u. If this is not the case, the system is said to be strongly
coupled.

In the present paper for a broad class of strongly coupled parabolic

systems pointwise boundedness of the solution u is established. ¢
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POINTWISE A-PRIORI BOUNDS FOR STRONGLY COUPLED e
SEMILINEAR PARABOLIC SYSTEMS
E'i
Reinhard Redlinger X
Pon
LN
1. We consider strongly coupled semilinear parabolic systems of the form Rt:ﬂ
X f#é:
du y 3 kl au kL 3u A%y,
5= ) 5-—9 + 5 a a----.+ £%(¢,%,u)
(n RN (13 Wk

for 0 Ct<T , xe , k= 1,2,...,n
under homogeneous linear boundary conditions. Here u = (u‘,...,u“), 2 is a bounded
domain in RA® and 0 ¢ T < ®». It is the purpose of this paper to establish pointwise
a-priori bounds for solutions u of (1). The same problem has also b;en treated by
Cosner [4], Alikakos {1, §3] and Amann {2, §7]. 1In contrast to these authors, we do not
suppose that f is a gradient or that the matrix (afg) satisfies any symmetry

conditions. Our main result is stated in section 2. Section 3 contains some examples.

2. Let 1 C % be a bounded domain whose boundary 9R is a (m-1)-dimensional cZ-manifold
such that & 1lies locally on one side of 3. let 0 < T< o and set J = (0,T) with

Jg = (0,T). We wish to study the system of equations

(2) u: - Lk(t,x)u + fk(t,x,u) for te J, xef, Xx=1,2,e00,n ,

where u = (ul,...,uM), ut = 3uk/3t, £ : Ix 0 x B » B! is a given measurable function

and

teuz T o, 13"'*’” oty + T a:‘(t.x)nxu‘
1,52 1,0

with Dy = 3/3x1. Summation in i,j 4is from 1 to m and in Xk,t from 1 to n. The

coefficients of 1X are assumed to satisfy the following smoothness conditions: Por all

i, 3, X, £ the partial derivatives Dj atg exist in J5 x @ and a}%. Dj a}%, nt‘ are
bounded continuous functions in Jg X fl. Moreover, these functions are Holder continuous ;j

of exponent ¥ in t for some 0 < u € 1, uniformly with respect to x ¢ 1. Also, the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
Wissenschaftsausschuss der NATO under DAAD-Grant 300-402-502-6.
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functions u§§ are uniformly continuous in x with a modulus of continuity independent

of t € Jg, and there is a function ¢ : Jg + (0,) such that

(3) ) l:;'(t,x)q‘;q;'> cte) ¥ (q‘;)z in 3, %0 for all q';c o=
1.3,k,2 3.k

We will show at the end of the paper how condition (3) can be relaxed.
We assume that u satisfies Dirichlet boundary conditions,
(4) ua=0 on Jx 3 .
However, if the coefficlents of 1X for all k are independent of t, then we also admit
boundary conditions of the form (k = 1,2,,,.,n)

(5) g 7 a* pulyd 4 (1-6%)% + 65 T B (x)ul =0 on Ix 30 .
1,9, 31 ]

Here &K ¢ c(an,{0,1}), v = (Y1,...,Ym) denotes the outer normal to 3R and the b are
continuously differentiable functions on 23Q satisfying

(6) 7 6 n* % % n% 5 0 on 90 for a1l ne R' .
k,2

Of course, (4) is a special case of (5).

Let X = tF(A,RY), 2 < p <=, with 1.1 p denoting the usual norm. For te€ J,

’

define the operator A(t) : D(A)C X+ X by
Att)e = =(Lh(E ), I + &, ue DOA)
with dp > 0 a real constant and
D(A) = {u € W2rP(Q,R") , u satisfies (4) or resp. (5)} .
Note that D(A) 1is independent of t. If we wish to stress the fact that A(t) and X

depend on p, we will write Ap(t) and XD in the sequel.

D(A) 1is dense in X, the A(t) are closed operators and, provided dp is chosen

sufficiently large, we have

1

Lae)+) T ¢ up(ulxl)" for all te I, ReX > 0

0
with a constant Hp independent of t, A (01 denotes the norm in L(X), the space of
bounded linear transformation on X). For proof see [5]. Furthermore, our assumptions

imply that there are constants X, P > 0 such that

1(a(t) - AsA~ T ()1 < Xle-sl* , &, 8, T e I,

-2-
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Hence, for each t € J,, Alt) generates an analytic semigroup exp(-sA{t)), s> 0, and

the fractional power A%(t) of A(t) for any a& > 0 can be defined as the inverse of

e 1 o
A (t)'m_roe

(see [9]). Set X = D(A“), A = A(0), with norm lxlu - IA“xl for x ¢ . We then have

-Bl(t)sd-Id’

the continuous imbeddings (6, §1.6]

(7a) xp + xq for m/p < 2a4m/q, 9> p ,
(™) x; » @) for 0< Vv ¢ mp .

Finally, denote by W(t,s), s ¢ t € J; the linear evolution system generated by the

operators A(t), [9). Then there is a 6§ > 0 sguch that for any 0< 8 € a < 1 we have

-8 B-co-é(t-s)

s8< te J

(8) I (eIwt,s)n 0

(8)! € C(t-8)
with a constant C = C{a,8) 4independent of 8, t. If the operators A(t) are independent
of t, then W(t,s) = exp(-(t-s)A) and the estimate (8) is well-known (9, §2]. In the
time-dependent case a detailed proof of (8) is gqiven in (8]).
Bquations (2} with (4) or (5) can be summarized in the ahstract equation
(9a) u, + Alt)u = F(t,u) ’ tedJ
where
Fit,u) = f(t,*,u) + dpu .
Together with
(%) u(0) = u, € X
(9) describes an initial value problem in X. Let us assume that f satisfies the
following condition:
(10) There are constants 0 < §, p € 1 such that for any R > 0 we have
lett,x,v) - £(s,x,w) | < c(lt-a|® + lvw|?)
for all t, s € Jg, x€¢ 2, v, we R' with a constant C = C(R).

It then follows from [9, Sect. 2.5] that the initial value problem (9) has a local solution

ue€ C((O,t],xp) [a] c‘((o,t),xp), defined on some interval 0 < t < 1, provided uje ﬂi

-3~




(gl N R & e

R

LY

for some B8 > m/2p. Moreover, we have u € C([O,T],x%) for any 0< a ¢ B and
u(t) € D(Ap) for 0 < t € T, We wish to establish a time-dependent bound for u in ﬂz.
By [9, p. 57) this is sufficlent to prove a global existence theorem.

Thus, let u € C(Jo,xp) N C'(J,xp) denote from now on a fixed solution of (9) in xp
obtained by the method of proof used in (9, Sect. 2.5). We assume that p = 2 in case
m <4 and that p > m/2 otherwise.

For t € Jg 1let

a**(¢) = sup((] [a:‘(c.x)lzﬂ@ : x € Q)
i

and set

a(t) = sup{ J o et v, we R, vl = lw] = 1)
k,L

with [+| denoting the Euclidean norm in R'. We define

1 x 2
v(t) "Efn))*; (e ax , te

and introduce the following hypotheses:

(vq) There is a continuous function & : Jo x [0,») + R such that

[ ] e mmaxc 0e,m) 1n 3 .
*

(Vy) The maximal solution Ymax ©f the ordinary differential equation
1 a(t) -
Y, d(e,y) + O RE y(0) = v(0)

with ¢ given by (3) exists on Jo and is bounded.

vy There are constants Co > 0, r> 1 such that

|e(t,%,2)] < Cplt + 12]¥) for te I3, xecQ, z¢e R* .

Theorem. Let u be a solution of (9) in xp as described above and assume ug € D(Ap).
Let hypotheses (V,), (V,) and (V43) with r < 1 + 4/m be satisfied. Then, for any 8 ¢ ¢,
u(t) 4is bounded in xg uniformly on Jge In particular, u(t) 1is uniformly bounded in

c@, ).

~4-
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Remarks (i) Assume that f satisfies (10) and that u, ¢ xg for some B > m/2p. (This
nolds, if ug € C'(MR") for some v > 0 with u§ =0 on 3 for all k with §% =0
in (S).) Then (9) will have a local solution u in xp. As noted above, u(t) ¢ D(Ap)
for t > 0. We can thus use the assertion of the theorem to prove that this solution is
global. However, in this case the initial condition on y in (Vz) has to be replaced by
v(0) = v(0) + €, where € > 0 is arbitrarily small.

(14) Uniform a-priori bounds on u in @, ) with ¢ satisfying (10) have also been
obtained by Cosner [4] and Alikakos [1, §3) for the time-independent system (2) under
Dirichlet boundary conditions and by Amann {2, 7] for the boundary value problem (2),
(5)¢ (In the last paper, time-dependent boundary conditions and higher order elliptic
systems are also considered.) The bounds on r used in these papers are less restrictive
than the one stated above. However, all these authors impose severe structure conditions
on the system (2): It is assumed that a{% - lgi - ai; in Jyx Q@ for all 14, 3, k, £
and that f is of the form f = g+h, where g satisfies a linear growth condition and

h 1is a gradient, h = grad, H(x,u). WNo such conditions are needed in the above theorem.
(111) As the following proof shows it suffices to require c(t) > 0 on J3 in (3) in

case a(t) =0 on J,.

Proof of the theorem. We first establish a time-independent bound for u on Jg in X,.

In fact, since u ¢ c‘(a,xz), we get for t € J

av/at = fn nk u:
k

- f { uk{ Z D (akl D “l) + Z a D ul + tk} .
Q X 1,1.¢ 44 1.1 i i

Ry partial integration the first summand is equal to

P A N

-1 l"-
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f Z uk akl ] ulvj - f z ] uk akl D ul
My MH B ige 3 1

- -fan T skukpktstyt - fn ) Djukakl p,ut
%, i,3.%,L

<0 - clt) fﬂ ) |Djuk|2 - -c(t) fn'grad ul2 ’
L 5]

where we have used (3) and (6). Also

fn ¥ uka:L Diul < fn a(t) |ul lgraa ul
i,%,2

a(t)

<
2 c(t)

v(t) + c(t) fn |grad al? .

Summing up and using (V,) we thus get

ta(e)
2 clt)

But this implies V < Ymax in Jos where Ymax is defined in (Vz). Hence V 1is bounded

dv/dat € &(t,V) + VvV in J .
in J,, i.e. u is bounded in Xy, uniformly on Jg-
Since u is a solution of (9) in X,, it follows in particular that u satisfies
in X, the integral equation
() u(t) = W(t,0)ug + [§ W(t,8)F(s,u(s))ds , te I

By (V,) and (7a) we have

r
l?(s,u(s))l’ < C1(1 + lu(s)l,Zr)

2
r
< c2(1 + Iu(s)la)

for any @ > m(r-1)/4r with constants C4, C, independent of 8 ¢ J. We now make use of
the inequalicy

v 1=v 8
ful_ < ™M ful F 0
ul uI’2 ulg for u ¢ Xz, <a <8

where v =1 -a/8 and C = c(a,8) 1is a certain constant (see (9, (1.55}]). This gives

r{1-v)

< C3(1 + lu(s)l8 ) for se J

{(12) 1P(s,uls))! 2
’

with 8 > a arbitrary and constant Cy. We choose B in such a way that
(13) a <8 <1 and r(1=v) <1 .

This is equivalent to ra <8 < 1, i.e. to m{r-1)/4 <8 < 1. Since r < 1+4/m, such a
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hoice is poasible.

'

Define z(t) = lu(c)lB. Using (9, (1.68)] one can show that z ¢ C(Jo,xz). Further,

for t € J we have

‘

£ 5(t-s)

t r(1=v)
(14) z(t) € Clugl, + [ Cstt=s) e (1 +z

(s))ds
by (8) and (12) with constants C,, Cg independent of t, s and arbitrary 8 < <.

Here, use is made of the estimate

~

Paf(ert < const.  for B <B,tea |,

which can be proved as (9, (1.59)].

But r(1-v) ¢ 1 by (13) and hence (14) implies that z(t) < S in Jg for some
constant S. In case m < 4 this establishes the assertion of the theorem.

In case m > 4 we choose 8 <close to 1 and apply (7a). It follows that u(t) is

bounded in Xq. uniformly on Jg,, for any q > 2 satisfying 1{/q > %-- 2/m. We can

choose q = q4 > 2r. Consider (9) in X with py = q4/r. Then P(s,u(s)) for se€ J,

P

is bounded in xp1 by (V3) and using (11) it is easy to see that lu(t)lB’p is bounded
1

on J; for any 0 < 8 ¢ 1. Thus, again by (7a), u is bounded in xq2 for any q3 > py
satisfying 2 + m/q; > m/py. Repeating this reasoning we get two sequences (q,), (p,)

with

9y m m
p == , - <2 - — ,
v r q\N"l q\H_" p“

where q4 > 2r, 1/q1 > % - 2/m and m > 4. It follows that after finitely many steps we

can choose p, = p > m/2. This proves the theorem.

3. Examples. a) Conasider the system

2
A - - -
“t = AAu p1Av v Y1u

(15)

v, = ~p Au + yAv 4+ uv - Y

t 2 2v

under houndary conditions (S5). Let A, u, 01, 02, Y,, Y2 be real constants with

2
A, ¥, Yqr Yy 2 6 and 4iu > (91 + 02) « Since glu,v) = (-vz,uv) is not a gradient and

-7-
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since we do not assume 04 = p,, the results in [1], [{2]) and (4] cannot be applied to
(15). To prove global houndedness for solutions of (15) one could alsc try to use
comparison methods (3], {10]. However, apart from the structure of the nonlinearity in
(15) this method will only be available if we additionally assume that Py =Py = 0 or
that 40102 + (x-u)2 > 0. In this case, possible candidates for invariant sets are sets
which at each boundary point have their normal vectors equal to left eigenvectors of the
diffusion matrix (see {3]). But on the boundary of any such set (at least for small Yy)
there are points at which the nonlinearity in (15) does not point inward. Hence this
method also cannot be applied to (15).

On the other hand, it is easy to see that (V4) is satisfied with ¢(t,V) = -2yV, Yy =
min(Y4,Y3). Making use of the theorem we thus see that for any smooth initial data (15)
will have a bounded solution existing for all time provided the space dimension m is
1, 2 or 3. Note that yp, * 0 as t+ = and hence u, v+ 0 ags t + =,

8) lLet & = (0,L), L > 0 and consider

= u +3v _+ve-u
(16)

vt = vxx +u - v3
with u = v, =0 on 3Q. Since the diffusion matrix A = (; 2) is not symmetric, the
hypotheses in [1], (2] and [4] are not satisfied. Comparison methods cannot be applied to
(16), since A cannot be brought into diagonal form. Also, A 1is not positive definite,
and hence condition (3) is not satisfied.

Define w = % u, z = vo. This gives

(RA]
2z = z + 3w -z

with w = z, = 0 on 28Q. For the transformed boundary value problem, all assumptions of

section 2 are satisfied. 1In particular, we can choose

10

o(e,v) = 2V - win .

© Y,
ﬁﬁ'!

&S

Ve




Hence (17), and thus (16), has a global solution for any smooth initial values.
The transformation used in the last example indicates a way to get rid of condition

(3). 1t is only necesgsary to assume that there are positive constants Tk such that,

k k

with u replaced by w = ‘l‘kuk, the transformed boundary value problem (2), (5)

satisfies the assumptions of the theorem. In essence, this leads to the following problem: ’
let A be a real (nxn)-matrix. Give sufficlent general conditions on A under which ’
there exists a diagonal matrix D = (d4,...,d4,) with positive d; such that DA is
positive definite. e

For n = 2 the answer can be given readily, but for higher dimensions the problem n _>
geems to he rather Aifficult. A recent Adiscussion of this question and some results can be

found in [7). ol

-




1.

2.

4.

5.

10.

N.

H.

REFERENCES

Alikakos. OQuantitative maximum principles and strongly coupled gradient-like
reaction~diffusion systems. Proc. Royal Soc. Edinburgh 94A (1983), 265-286.

Amann. Glohal existence for semilinear ;arabolic systems. J. reine und angew.
Math. 360 (1985), 47-83.

Chueh, C. Conley and J. Smoller. Positively invariant reqions for systems of
nonlinear Aiffusion equations. Ind. Univ. Math. J. 26 (1977), 373-392.

Cosner. Pointwise a priori bounds for strongly coupled semilinear systems of
parabolic partial Adifferential equations. Ind. Univ. Math. J. 30 (1981),
607-620.

Friedman. Partial differential equations. Holt, Rinehart and Winston, New York
1969.

Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in
Mathematics 840, Springer-Verlag, Berlin 1981.

Redheffer. Volterra multipliers I. (to appear).

Redlinger. Compactness results for time-dependent parabolic systems. J. Diff.
Equ. (to appear).

E. Sobolevskij. Equations of parabolic type in a Banach space. Amer. Math. Soc.
Transl. (2) 49 (1966), 1-62.

Walter. Differential and integral inequalities. Springer-Verlag, Berlin 1970.

~10~

R

)

.
)

v e ..
e e 0 g
-'l'l
()
T
ORU

‘Y v
Rrrs

L

>
¢ ¢

v
AR

. l" e
r"




SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

READ INSTRUCTIONS
T. REPORT NUMBER 2. GOVT ACCESSION NO,| 3. RECIPIENT’S CATALOG NUMBER

#2925
4. TITLE (and Subtitle)

S. TYPE OF REPORT & PERIOO COVERED
Summary Report - no specific

reporting period
6. PERFORMING ORG. REPORT NUMBER

Pointwise A-Priori Bounds for Strongly
Coupled Semilinear Parabolic Systems

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

) ) DAAD-~300-402-502~6
Reihard Redlinger

DAAG29-80-C-0041
9. PERFORMING GRGANIZATION NAME AND ADDRESS 10. RROGRAM ELEMENT. PROJECT, . TASK :-"._-::'
Mathematics Research Center, University of Work Unit Number 1 - T
610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706 e
11, CONTROLLHNG OFFICE NAME AND ADORESS 12. REPORT DATE
U. S. Army Research Office March 1986
P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 10

T3, MONITORING AGENCY NAME & ADDR!SS{" different from Controlling Office) 18. SECURITY CLASS. (of thia report)

UNCLASSIFIED

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, !f ditferent from Report)

18. SUPPLEMENTARY NOTES -',‘.' N

19. KEY WORDS (Continus on reverse eide if necessary and identify by block number)

Parabolic systems, boundedness of solution

20. AGSTRACT (Continue on reverse side If necessary and ideatily by block number)

A-priori boundedness results for solutions of strongly coupled semilinear
parabolic systems of second order under homogeneous linear boundary conditions
are established. In contrast to [1)}, [2], [4] it is not supposed that the
diffusion operator is self-adjoint or that the nonlinearity is of gradient-
type.

DD ,"53'5s 1473  eoimion oF 1 nov 68 15 oBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




S Rl

o

T

EYE ST N0

I




